Safety in the hypertriglyceridemia treatment with n-3 polyunsaturated fatty acids on glucose metabolism in subjects with type 2 diabetes mellitus

Caio Eduardo Gonçalves Reis¹, Karla Câmara Landim², Aline Costa Santos Nunes³ and Jane Dullius⁴

¹School of Health Sciences, University of Brasilia, Brazil. ²Doce Desafio Program, University of Brasilia, Brazil. ³Department of Pharmacy, University of Brasilia, Brazil. ⁴School of Physical Education, University of Brasilia, Brazil.

Abstract

Introduction: Type 2 diabetes mellitus increases the risk of hypertriglyceridemia and is an independent risk factor for cardiovascular diseases. Current literature reveals the beneficial effects of n-3 polyunsaturated fatty acids (n-3 PUFA) in hypertriglyceridemia treatment, however the safety for type 2 diabetic subjects are still debatable. This literature review discusses the safety on glucose metabolism of n-3 PUFA supplementation in the treatment of hypertriglyceridemia in subjects with type 2 diabetes mellitus.

Methods: A literature review was conducted on EMBASE and MEDLINE database to investigate clinical trials published since 1990 until June 2014 that investigated the effects of dietary/supplementation n-3 PUFA intake in hypertriglyceridemia treatment in subjects with type 2 diabetes mellitus.

Results and Discussion: Fourteen clinical trials (n = 2,105) were included in this review. All trials reported a reduction in triglycerides levels between 12 - 34% in intra-group and 15 - 36% in between-groups analysis. Four trials showed a significant increase in LDL-c (6 - 18%) and another four in HDL-c levels (4 - 15%). No significant changes were found to total cholesterol, VLDL-c, fasting glucose, HbA1C, and insulin sensitivity index.

Conclusions: The n-3 PUFA supplementation leads an improvement on TG levels and did not result in any impairment on glucose metabolism in hypertriglyceridemic patients with type 2 diabetes mellitus being a safe option to treat the diabetic population.

(Nutr Hosp. 2015;31:570-576) DOI:10.3305/nh.2015.31.2.7845

Key words: N-3 PUFA. Diabetes mellitus. Triglycerides. Lipid profile. Cardiovascular diseases.
Abbreviations

CVD: Cardiovascular diseases.
DHA: Docosahexaenoic acid.
EPA: Eicosapentaenoic acid.
FPG: Fasting plasma glucose.
HbA1c: Glycated hemoglobin.
HDL-c: High-density lipoprotein cholesterol.
HOMA: Homeostasis model assessment.
IGT: Impairment glucose tolerance.
ISI: Insulin sensitivity index.
LDL-c: Low-density lipoprotein cholesterol.
n-3 PUFA: n-3 polyunsaturated fatty acids.
OGTT: Oral glucose tolerance test.
PUFA: Polyunsaturated fatty acid.
QUICKI: Quantitative insulin sensitivity check index.
T2DM: Type 2 diabetes mellitus.
TAG: Triglyceride.
TC: Total cholesterol.
VLDL-c: Very low-density lipoprotein cholesterol.

Introduction

Intake of n-3 polyunsaturated fatty acids (n-3 PUFA) has been shown to produce a favorable effect on many markers of the metabolic syndrome and decrease the risk of cardiovascular diseases (CVD). Increasing the consumption of n-3 PUFA promotes metabolic modulation of proinflammatory cytokines, prostaglandins and leukotriene generating substances with less inflammatory activity. Furthermore n-3 PUFA is efficient to lower triglycerides levels, leading a reduction on cardiovascular risk diseases.

The increased occurrence of type 2 diabetes mellitus (T2DM) is followed by increased risk factors for dyslipidemia (TG) is an independent risk factor for cardiovascular diseases. The triacylglycerol-lowering effect of n-3 PUFA promotes metabolic modulation of proinflammatory cytokines, prostaglandins and leukotriene generating substances with less inflammatory activity. Furthermore n-3 PUFA is efficient to lower triglycerides levels, leading a reduction on cardiovascular risk diseases.

The increased occurrence of type 2 diabetes mellitus (T2DM) is followed by increased risk factors for CVD, dyslipidemia and hypertriglyceridemia. Evidence shows that high concentration of triglycerides (TG) is an independent risk factor for cardiovascular diseases. In this context, nutritional interventions are a new strategy to reduce TG levels and help to prevent and treat dyslipidemia and CVD.

The triacylglycerol-lowering effect of n-3 PUFA supplementation is recognized in T2DM subjects, but the safety on the glucose metabolism is controversial. Some research shows an increase in blood glucose levels, which would contradict its use by this population. Furthermore, Wu et al. (2012), in a systematic review and meta-analysis (n = 481,489) shown that n-3 PUFA consumption (seafood and plant sources) are associated to 12% of increased risk of T2DM.

Therefore, the aim of this literature review is discuss the safety of n-3 PUFA supplementation on glucose metabolism in the treatment of hypertriglyceridemia in subjects with type 2 diabetes mellitus.

Methods

Data Sources

An extensive English and Spanish-language literature review was conducted to investigate recent clinical trials published between 1990 – June 2014 on the electronic database EMBASE and MEDLINE. The search and cross-referenced terms used were: omega 3, omega 3 fatty acids, n-3 polysaturated fatty acids, n-3 PUFA AND hypertriglyceridemia, hypertriglyceridemia, triglyceridemia, triacylglycerolemia, triacylglycerol, triglycerides AND diabetes, diabetes mellitus, and Type 2 diabetes mellitus; and their respective terms in Spanish. In order to broaden the search, additional trials were sought from the references cited in the selected trials.

Study selection

Were included clinical trials that investigated the effects of dietary / supplementation of n-3 PUFA in hypertriglyceridemia treatment in subjects with T2DM. The trials were accepted only with protocol design approved by a human ethics committee. The inclusion criteria were assessed by reading the summary and methodology of the trials.

Trials were discarded if they were deemed irrelevant to the review’s objectives, duplicate publications, reported an inappropriate population type, did not report defined outcomes, used an alternative study design or were not published in the English and Spanish language.

Data synthesis

The following information were explored in each trial and were presented in this study: country and year of publication, study design, n-3 PUFA treatment, sample size, statistical analyses, trial outcomes and proposed mechanisms discussed. When necessary, additional data were requested to the corresponding author. The following trial results were verified: the n-3 PUFA effects on triglycerides (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-c), very low density lipoprotein cholesterol (VLDL-c), high density lipoprotein cholesterol (HDL-c), fasting plasma glucose (FPG), glycated hemoglobin A1c (HbA1c) and insulin sensitivity index (ISI).

The data were synthesized by constructing descriptive summary and main results tables. The data shown in the results section were extracted from the results of the selected trials. A meta-analysis was not performed given the heterogeneity in the data due to the differences at studies design and variables: (i) follow-up period (2 weeks to 1 year); (ii) dose of the n-3 PUFA.
per day (840mg to 10g); (iii) type of the treatment (n-3 PUFA, fish oil, Eicosapentaenoic acid – EPA + Docosahexaenoic acid – DHA); (iv) different methods to analyse the variables becoming unable to summarize the data of the trials.

Results

We identified 244 citations in the electronic search, of which 36 abstracts were relevant. From these abstracts included 14 clinical trials18,20,27 were included in the review.

Characteristics of the studies

The trials analyzed are heterogeneous in the country, gender and age of the population, study design, sample size, follow-up period, type of the n-3 PUFA supplementation (EPA and DHA) and fish oil and linseeds oil.

A total of 14 trials included, three were from Italy and France, two from Australia, and one from Sweden, USA, Canada, Iran, Spain and Brazil. There were four randomized double-blind crossover clinical trial (high quality experimental design), six randomized double-blind clinical trial (good quality), one randomized single-blind clinical trial (low quality), and three clinical trials (poor quality). The trials ranged in duration from 2 weeks to one year. The individual trial sample size ranged from 8 to 935 and the ages between 21 and 80 years. A total of 2105 hypertriglyceridemic patients with T2DM were included in the 14 trials. The source of n-3 PUFA supplementation were isolated n-3 PUFA, fish oil, EPA or DHA, and the dosage ranged from 840mg of EPA plus DHA to 10g n-3 PUFA. The characteristics of these trials are summarized in table I.

Metabolic Implications

There was a reduction in TG levels range from 12 to 34% (p<0.05) between the initial and final values (intra-group), and from 15 to 36% (p<0.05) when placebo and intervention groups were compared (between-groups). Two trials reported non-significant effects on TG levels.23,31 Concerning the total cholesterol levels, four trials reported improvement but just one shown a significant reduction of 4% (p<0.05).32 Two trials that evaluated the VLDL-c levels showed significant reductions ranging from 26 to 36.0%,18,19 Regarding to LDL-c all significative results showed an increase from 6 to 18%.,16,20,27 Twelve trials evaluated the effects of n-3 PUFA on the HDL-c levels, and it was observed a significant increase in intra and between-groups analysis (5 to 15%,27,30 and 4 to 7%,21,33, respectively).

Regarding the effects of n-3 PUFA on glucose metabolism the results are clear. Twelve trials evaluated the HbA1c levels and only Axelrod et al. (1994) reported a small significant increase of 0.72\text% compared with safflower oil (p<0.05).20 Regarding to fasting plasma glucose, thirteen trials showed a non-significant modification on fasting plasma glucose after n-3 PUFA supplementation. Woodman et al. (2002) reported a significant increase of 12% and 19% after the consumption of the DHA and EPA treatment, respectively.23 Seven trials assessed insulin sensitivity indices (euglycemic, hyperinsulinemic clamp, hyperglycemic clamp, homeostasis model assessment - HOMA, and quantitative insulin sensitivity check index – QUICKI) and no significant changes were observed. These results are described in table II.

Discussion

The literature data confirm the hypotriglyceridermic effect of the n-3 PUFA in subjects with T2DM, mainly in hypertriglyceridermic subjects. This effect is dose-dependent, but do not indicate the levels of optimal intake, the ideal source of n-3 PUFA supplementation (isolated n-3 PUFA, fish oil, EPA or DHA) and the duration of the intervention period. However, the data suggest that an intake of 3-4g n-3 PUFA per day can be effective in the reduction of TG levels without adverse effects32. Therefore, more randomized controlled trials are extremely important to evaluate the response to different sources and to define the optimal amount for safe and efficient supplementation.

Despite the benefits of n-3 PUFA consumption on hypertriglyceridermia treatment, the role of its effects on glucose metabolism (fasting glucose, HbA1c, and insulin sensitivity index) in T2DM subjects is controversial. While some old studies (before 1990) with high dose used (≥10g/day fish oil) have reported an unfavorable effect of n-3 PUFA on glucose metabolism13,16 the recent studies (after 1990) using low doses (2 – 4g/day) have shown no deleterious effects (Table II).

The n-3 PUFA intake has many beneficial physiological effects, can reduce insulin response to oral glucose without altering the glycemic response in healthy humans19. Regarding T2DM people, Hartweg et al., (2008) reported in a review study (n = 1,075) that n-3 PUFA supplementation has no significant change in HbA1c, fasting glucose and fasting insulin18. Akintunde et al., (2011), in a meta-analysis study (n = 618) showed that n-3 PUFA intervention had no effects on insulin sensitivity compared to placebo in a T2DM subjects24. These results are consistent with our findings, but we have also identified more recent clinical trials.

The present review pools the results from 14 clinical trials of n-3 PUFA supplementation studying a total of 2,105 hypertriglyceridermic patients with T2DM. As the main results, n-3 PUFA supplementation had a statistically significant improvement on TG and VLDL.
<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Study design</th>
<th>N°</th>
<th>Gender</th>
<th>Age (y)</th>
<th>Treatment/day</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annuzzi et al., 1991</td>
<td>Italy</td>
<td>RCT double-blind crossover</td>
<td>8</td>
<td>M</td>
<td>45-57</td>
<td>10g n-3 PUFA</td>
<td>2x (2 wks)</td>
</tr>
<tr>
<td>Boberg et al., 1992</td>
<td>Sweden</td>
<td>RCT double-blind crossover</td>
<td>14</td>
<td>M + F</td>
<td>55-75</td>
<td>3g n-3 PUFA</td>
<td>2x (8 wks)</td>
</tr>
<tr>
<td>Axelrod et al., 1994</td>
<td>USA</td>
<td>RCT double-blind</td>
<td>18</td>
<td>M + F</td>
<td>21-65</td>
<td>2.5g n-3 PUFA</td>
<td>6wks</td>
</tr>
<tr>
<td>Sirtori et al., 1997</td>
<td>Italy</td>
<td>RCT double-blind</td>
<td>868</td>
<td>M + F</td>
<td>45-80</td>
<td>(1.53g EPA + 1.05g DHA) and 2g n-3 PUFA</td>
<td>2 and 4 months</td>
</tr>
<tr>
<td>Goh et al., 1997</td>
<td>Canada</td>
<td>RCT double-blind crossover</td>
<td>28</td>
<td>DNS</td>
<td>54-62</td>
<td>7-8g fish oil / linseed</td>
<td>3 months</td>
</tr>
<tr>
<td>Sirtori et al., 1998</td>
<td>Italy</td>
<td>RCT double-blind</td>
<td>935</td>
<td>M + F</td>
<td>45-80</td>
<td>(1.53g EPA + 1.05g DHA) and 2g n-3 PUFA</td>
<td>6 and 6 months</td>
</tr>
<tr>
<td>Luo et al., 1998</td>
<td>France</td>
<td>RCT double-blind crossover</td>
<td>12</td>
<td>M</td>
<td>49-60</td>
<td>6g fish oil</td>
<td>2 months</td>
</tr>
<tr>
<td>Woodman et al., 2002</td>
<td>Australia</td>
<td>RCT double-blind</td>
<td>51</td>
<td>M + F</td>
<td>40-75</td>
<td>4g EPA and 4g DHA</td>
<td>6 wks</td>
</tr>
<tr>
<td>Ouguerram et al., 2006</td>
<td>France</td>
<td>CT</td>
<td>5</td>
<td>DNS</td>
<td>36-65</td>
<td>6g fish oil</td>
<td>8 wks</td>
</tr>
<tr>
<td>Garg et al., 2007</td>
<td>Australia</td>
<td>CT</td>
<td>13</td>
<td>M + F</td>
<td>DNS</td>
<td>1.3-1.4g n-3 PUFA</td>
<td>2 wks</td>
</tr>
<tr>
<td>Kabir et al., 2007</td>
<td>France</td>
<td>RCT double-blind</td>
<td>26</td>
<td>F</td>
<td>40-60</td>
<td>3g Fish oil</td>
<td>2 months</td>
</tr>
<tr>
<td>Shidfar et al., 2008</td>
<td>Iran</td>
<td>RCT double-blind</td>
<td>56</td>
<td>M + F</td>
<td>35-75</td>
<td>2g n-3 PUFA</td>
<td>10 wks</td>
</tr>
<tr>
<td>De Luis et al., 2009</td>
<td>Spain</td>
<td>CT</td>
<td>30</td>
<td>M + F</td>
<td>42-72</td>
<td>465mg EPA and 375mg DHA</td>
<td>12 wks</td>
</tr>
<tr>
<td>Crochemore et al., 2012</td>
<td>Brazil</td>
<td>RCT single-blind</td>
<td>41</td>
<td>F</td>
<td>DNS</td>
<td>1.5 g fish oil and 2.5 g fish oil</td>
<td>30 days</td>
</tr>
</tbody>
</table>

CT: Clinical trial; RCT: Randomized clinical trial; M: Male; F: Female; n-3 PUFA: n-3 polyunsaturated fatty acids; EPA: Eicosapentaenoic acid; DHA: Docosahexaenoic acid; DNS: Data not shown; Wks: Weeks.
Table II

<table>
<thead>
<tr>
<th>Author, year</th>
<th>TG</th>
<th>TC</th>
<th>VLDL-c</th>
<th>LDL-c</th>
<th>HDL-c</th>
<th>HbA1c</th>
<th>FPG</th>
<th>ISI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annuzzi et al., 199118</td>
<td>↓16%§</td>
<td>N/C</td>
<td>↓26%§</td>
<td>↑18%§</td>
<td>NA</td>
<td>NA</td>
<td>↓5%ns</td>
<td>N/C</td>
</tr>
<tr>
<td>Boberg et al., 199219</td>
<td>↓27%¥</td>
<td>N/C</td>
<td>↓36%§</td>
<td>↑6%§</td>
<td>↑8%ns</td>
<td>↑16%ns</td>
<td>↑6%ns</td>
<td>N/C</td>
</tr>
<tr>
<td>Axelrod et al., 199420</td>
<td>↓29%§</td>
<td>↓8%ns</td>
<td>NA</td>
<td>↓8%ns</td>
<td>N/C</td>
<td>↑0.7%¥</td>
<td>N/C</td>
<td>NA</td>
</tr>
<tr>
<td>Sirtori et al., 199721</td>
<td>↓21.5%¥</td>
<td>N/C</td>
<td>NA</td>
<td>↑6%§</td>
<td>↑4%§</td>
<td>N/C</td>
<td>N/C</td>
<td>NA</td>
</tr>
<tr>
<td>Goh et al., 199722</td>
<td>↓15%ns</td>
<td>↓8%ns</td>
<td>NA</td>
<td>↓9%ns</td>
<td>↑16%ns</td>
<td>N/C</td>
<td>N/C</td>
<td>NA</td>
</tr>
<tr>
<td>Sirtori et al., 199823</td>
<td>↓25.2%*</td>
<td>↓4%*</td>
<td>NA</td>
<td>N/C</td>
<td>↑7%§</td>
<td>N/C</td>
<td>N/C</td>
<td>NA</td>
</tr>
<tr>
<td>Luo et al., 199824</td>
<td>↓27%*</td>
<td>N/C</td>
<td>NA</td>
<td>↑14%ns</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
</tr>
<tr>
<td>Woodman et al., 200225</td>
<td>↓19%§</td>
<td>N/C</td>
<td>NA</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>↑19%§</td>
<td>N/C</td>
</tr>
<tr>
<td>Ougueram et al., 200626</td>
<td>↓24%*</td>
<td>N/C</td>
<td>NA</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>↑12%§</td>
<td>N/C</td>
</tr>
<tr>
<td>Garg et al., 200727</td>
<td>↓34%*</td>
<td>N/C</td>
<td>NA</td>
<td>↑10.5%*</td>
<td>↑5%*</td>
<td>↑4%ns</td>
<td>N/C</td>
<td>NA</td>
</tr>
<tr>
<td>Kabir et al., 200728</td>
<td>↓12%*</td>
<td>N/C</td>
<td>NA</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>↑8%ns</td>
</tr>
<tr>
<td>Shidfar et al., 200829</td>
<td>↓31.5%*</td>
<td>↓4%ns</td>
<td>NA</td>
<td>N/C</td>
<td>↓5%ns</td>
<td>N/C</td>
<td>N/C</td>
<td>NA</td>
</tr>
<tr>
<td>De Lais et al., 200930</td>
<td>↓34%*</td>
<td>N/C</td>
<td>NA</td>
<td>N/C</td>
<td>↑15%*</td>
<td>NA</td>
<td>N/C</td>
<td>NA</td>
</tr>
<tr>
<td>Crochemore et al., 201231</td>
<td>↓7%ns</td>
<td>N/C</td>
<td>NA</td>
<td>↑4%ns</td>
<td>N/C</td>
<td>N/C</td>
<td>↑5%ns</td>
<td>↓6%ns</td>
</tr>
<tr>
<td>De Lais et al., 200930</td>
<td>↓20%ns</td>
<td>N/C</td>
<td>NA</td>
<td>↑4%ns</td>
<td>N/C</td>
<td>N/C</td>
<td>↑7%ns</td>
<td>N/C</td>
</tr>
</tbody>
</table>

n-3 PUFA: n-3 polyunsaturated fatty acids; EPA: Eicosapentaenoic acid; DHA: Docosahexaenoic acid; TG: Triglycerides; TC: Total cholesterol; VLDL-c: Very low density lipoprotein cholesterol; LDL-c: Low density lipoprotein cholesterol; HDL-c: High density lipoprotein cholesterol; HbA1c: Glycated hemoglobin A1c; FPG: fasting plasma glucose; ISI: insulin sensitivity index; ↑: Increase; ↓: Decrease; NA: Not analyzed; N/C: No change (< 3%, p > 0.05); ¥: p < 0.01 between-groups; §: p < 0.05 between-groups; *: p < 0.05 intra-group (pre vs post); ns: difference non-significant.
cholesterol and deleterious effect in LDL cholesterol. Furthermore, n-3 PUFA supplementation did not result in any statistically significant increase in HbA1c, fasting glucose and impairment on insulin sensitivity indices. The dietary supplementation with n-3 PUFA in hypertriglyceremic T2DM patients leads to a reduction of TG without any side effect on glycemic control proving the safety of the n-3 PUFA treatment.

Conclusion

The n-3 PUFA supplementation leads an improvement on TG levels and did not result in any impairment on glucose metabolism markets (fasting glucose, HbA1C, and insulin sensitivity index) in hypertriglyceridemic patients with type 2 diabetes mellitus. These results show a safety use of n-3 PUFA in the hypertriglyceridemic treatment of T2DM population. Further studies are needed to be able to clarify the action mechanisms of n-3 PUFA on glucose metabolism, verifying, especially in a long-term, if these hypotriglyceridemic treatment will affect the glycemic control.

Acknowledgments

We are grateful to Sr. Ari Berman for the English review of the manuscript.

Author disclosure statement

No competing financial interests exist.

References

